exposiciones
EL CICLO DEL FOSFORO
El fósforo (P) es un macro mineral muy relacionado con el calcio, tanto en las funciones compartidas, como en las fuentes alimenticias donde está presente o sus recomendaciones de consumo. A mayor necesidad de uno, mayor necesidad del otro. La biodisponibilidad del fósforo mejora en presencia de vitamina D, Vitamina C y proteínas, entre otros.
Aunque está presente en cada célula, principalmente, el fósforo se encuentra en dientes y huesos, y constituye aproximadamente el 1% del peso total de una persona.
Propiedades del Fósforo - Efectos del Fósforo sobre la salud - Efectos ambientales del Fósforo
|
Fósforo
Símbolo P, número atómico 15, peso atómico 30.9738. El fósforo forma la base de gran número de compuestos, de los cuales los más importantes son los fosfatos. En todas las formas de vida, los fosfatos desempeñan un papel esencial en los procesos de transferencia de energía, como el metabolismo, la fotosíntesis, la función nerviosa y la acción muscular. Los ácidos nucleicos, que entre otras cosas forman el material hereditario (los cromosomas), son fosfatos, así como cierto número de coenzimas. Los esqueletos de los animales están formados por fosfato de calcio.
Cerca de tres cuartas partes del fósforo total (en todas sus formas químicas) se emplean en Estados Unidos como fertilizantes. Otras aplicaciones importantes son como relleno de detergentes, nutrientes suplementarios en alimentos para animales, ablandadores de agua, aditivos para alimentos y fármacos, agentes de revestimiento en el tratamiento de superficies metálicas, aditivos en metalurgia, plastificantes, insecticidas y aditivos de productos petroleros.
De casi 200 fosfatos minerales diferentes, sólo uno, la fluoropatita, Ca5F(PO4)3, se extrae esencialmente de grandes depósitos secundarios originados en los huesos de animales y que se hallan en el fondo de mares prehistóricos, y de los guanos depositados sobre rocas antiguas.
La investigación de la química del fósforo indica que pueden existir tantos compuestos basados en el fósforo como los de carbono. En química orgánica se acostumbra agrupar varios compuestos químicos dentro de familias llamadas series homólogas.
Esto también puede hacerse en la química de los compuestos de fósforo, aunque muchas familias están incompletas. La familia mejor conocida de estos compuestos es el grupo de cadenas de fosfatos. Las sales de fosfatos constan de cationes, como el sodio, junto con cadenas de aniones, como (PnO3n+1)(n+2)-, que pueden tener de 1 a 1 000 000 de átomos de fósforo por anión.
Los fosfatos se basan en átomos de fósforo rodeados en una disposición tetraédrica por átomos de oxígeno, el miembro más pequeño de la familia es el anión simple PO3-4 (el ion ortofosfato). La familia de las cadenas de fosfato se basa en hileras alternadas de átomos de fósforo y oxígeno en que cada átomo de fósforo permanece en el centro de un tetraedro de cuatro átomos de oxígeno. Hay también una familia estrechamente relacionada de fosfatos cíclicos.
Una característica estructural interesante de muchos de los compuestos del fósforo conocidos es la formación de estructuras tipo jaula. Ejemplos de estas moléculas son el fósforo blanco, P4, y uno de los pentóxidos de fósforo, P4O10. Las estructuras tipo red son comunes; por ejemplo, los cristales de fósforo negro en que los átomos están enlazados unos con otros.
En la mayor parte de sus compuestos, el fósforo está enlazado químicamente a cuatro átomos inmediatos. Hay gran número de compuestos en los que uno de los cuatro átomos está ausente y en su lugar hay un par de electrones no compartidos.
Hay también unos cuantos compuestos con cinco o seis átomos unidos al fósforo; son muy reactivos y tienden a ser inestables. Durante los años 60 y 70, se prepararon muchos compuestos orgánicos de fósforo. La mayor parte de estas estructuras químicas incluye tres o cuatro átomos enlazados al fósforo, pero existen también estructuras con dos, cinco o seis átomos unidos a cada átomo de fósforo.
Casi todo el fósforo utilizado en el comercio está en forma de fosfatos. La mayor parte de los fertilizantes fosfatados constan de ortofosfato diácido de calcio u otofosfato ácido de calcio muy impuros, Ca(H2PO4)2 y CaHPO4. Estos fosfatos son sales del ácido ortofosfórico.
El compuesto de fósforo de mayor importancia biológica es el adenosintrifosfato (ATP), que es un éster de la sal, el tripolifosfato de sodio, muy utilizado en detergentes y ablandadores de agua. Casi todas las reacciones en el metabolismo y la fotosíntesis requieren la hidrólisis de este tripolifosfato hasta su derivado pirofosfato, llamado adenosindifosfato (ADP).
Efectos del Fósforo sobre la salud
El Fósforo puede ser encontrado en el ambiente más comúnmente como fosfato. Los fosfatos son substancias importantes en el cuerpo de los humanos porque ellas son parte del material de ADN y tienen parte en la distribución de la energía. Los fosfatos pueden ser encontrados comúnmente en plantas. Los humanos han cambiado el suministro natural de fósforo radicalmente por la adición de estiércol ricos en fosfatos. El fosfato era también añadido a un número de alimentos, como quesos, salsas, jamón. Demasiado fosfato puede causar problemas de salud, como es daño a los riñones y osteoporosis. La disminución de fosfato también puede ocurrir. Estas son causadas por uso extensivo de medicinas. Demasiado poco fosfato puede causar problemas de salud.
El Fósforo en su forma pura tiene un color blanco. El fósforo blanco es la forma más peligrosa de fósforo que es conocida. Cuando el fósforo blanco ocurre en la naturaleza este puede ser un peligro serio para nuestra salud. El fósforo blanco es extremadamente venenoso y en muchos casos la exposición a él será fatal. En la mayoría de los casos la gente que muere por fósforo blanco ha sido por tragar accidentalmente veneno de rata. Antes de que la gente muera por exposición al fósforo blanco ellos a menudo experimentan náuseas, convulciones en el estómago y desfallecimiento. El fósforo blanco puede causar quemaduras en la piel, dañar el hígado, corazón y riñones.
Efectos ambientales del Fósforo
Fósforo blanco: El fósforo blanco estra en el ambiente cuando es usado en industrias para hacer otros productos químicos y cuando el ejército lo usa como munición. A través de descargas de aguas residuales el fósforo blanco termina en las aguas superficiales cerca de las fábricas donde es usado.
El fósforo blanco no es probablemente esparcido, porque este reacciona con el oxígeno bastante rápido.
Cuando el fósforo termina en el aire a través de los tubos de escape este teminará usualmente reaccionando con el oxígeno al instante para convertirse en partículas menos peligrosas. Pero en suelos profundos y en el fondo de los ríos y lagos el fósforo puede permanecer miles de años y más.
Fosfatos: Los fosfatos tienen muchos efectos sobre los organismos. Los efectos son mayormente consecuencias de las emisiones de grandes cantidades de fosfatos en el ambiente debido a la minería y los cultivos. Durante la purificación del agua los fosfatos no son a menudo eliminado correctamente, así que pueden expandirse a través de largas distancias cuando se encuentran en la superficie de las aguas.
Debido a la constante adición de fosfatos por los humanos y que exceden las concentraciones naturales, el ciclo del fósforo es interrumpido fuertemente.
El incremento de la concentración de fósforo en las aguas superficiales aumenta el crecimiento de organismos dependientes del fósforo, como son las algas. Estos organismos usan grandes cantidades de oxígeno y previenen que los rayos de sol entren en el agua. Esto hace que el agua sea poco adecuada para la vida de otros organismos. El fenómeno es comúnmente conocido como eutrofización.
|
El ciclo del fósforo es un ciclo biogeoquímico que describe el movimiento de este elemento químico en un ecosistema.
Los seres vivos toman el fósforo en forma de fosfatos a partir de las rocas fosfatadas, que mediante meteorización se descomponen y liberan los fosfatos. Estos pasan a los vegetales por el suelo y, seguidamente, pasan a los animales. Cuando éstos excretan, los descomponedores actúan volviendo a producir fosfatos.
Una parte de estos fosfatos son arrastrados por las aguas al mar, en el cual lo toman las algas, peces y aves marinas, las cuales producen guano, el cual se usa como abono en la agricultura ya que libera grandes cantidades de fosfatos. Los restos de los animales marinos dan lugar en el fondo del mar a rocas fosfatadas, que afloran por movimientos orogénicos.
De las rocas se libera fósforo y en el suelo, donde es utilizado por las plantas para realizar sus funciones vitales. Los animales obtienen fósforo al alimentarse de las plantas o de otros animales que hayan ingerido. En la descomposición bacteriana de los cadáveres, el fósforo se libera en forma de ortofosfatos (H3PO4) que pueden ser utilizados directamente por los vegetales verdes, formando fosfato orgánico (biomasa vegetal), la lluvia puede transportar este fosfato a los mantos acuíferos o a los océanos. El ciclo del fósforo difiere con respecto al del carbono, nitrógeno y azufre en un aspecto principal. El fósforo no forma compuestos volátiles que le permitan pasar de los océanos a la atmósfera y desde allí retornar a tierra firme. Una vez en el mar, solo existen dos mecanismos para el reciclaje del fósforo desde el océano hacia los ecosistemas terrestres. Uno es mediante las aves marinas que recogen el fósforo que pasa a través de las cadenas alimentarias marinas y que pueden devolverlo a la tierra firme en sus excrementos. Además de la actividad de estos animales, hay la posibilidad del levantamiento geológico de los sedimentos del océano hacia tierra firme, un proceso medido en miles de años.
El hombre también moviliza el fósforo cuando explota rocas que contienen fosfato.
La proporción de fósforo en la materia viva es relativamente pequeña, pero el papel que desempeña es vital. Es componente de los ácidos nucleicos como el ADN. 1 Muchas sustancias intermedias en la fotosíntesis y en la respiración celular están combinadas con el fósforo, y los átomos de fósforo proporcionan la base para la formación de los enlaces de alto contenido de energía del ATP, se encuentra también en los huesos y los dientes de animales. Este elemento en la tabla periódica se denomina como "P".
Función del fósforo
- Previene la caries dental.
- Forma parte de los huesos y disminuye la pérdida de masa ósea.
- Forma parte de las moléculas de las que se obtiene la energía a nivel celular.
- Forma parte del ADN y ARN que transfieren la información genética.
- Forma parte de las paredes celulares.
- Colabora en la activación de enzimas.
- Participa en el equilibrio ácido-base de las células.
- Forma parte de la vitamina B6.
Fuentes alimenticias de fósforo
Podemos encontrar fósforo en distintos alimentos:
- Pescado.
- Carne de ave y de ternera.
- Leche y huevos.
- Cereales integrales.
- Frutos secos.
Deficiencia de fósforo en la dieta
Es raro que exista un déficit de fósforo, ya que es fácil obtenerlo por la alimentación. Aún así, si se produciera puede provocar:
- Alteraciones óseas.
- Alteraciones en la contracción muscular.
- Alteraciones sanguíneas.
- Alteraciones renales.
Toxicidad del fósforo
- Tetania (espasmos dolorosos en las extremidades).
- Descalcificación.
CONTAMINACION LUMINICA
LA contaminación lumínica es el brillo o resplandor de luz en el cielo nocturno producido por la reflexión y difusión de la luz artificial en los gases y en las partículas del aire por el uso de luminarias inadecuadas y/o excesos de iluminación. El mal apantallamiento de la iluminación de exteriores envía la luz de forma directa hacia el cielo, en vez de ser utilizada para iluminar el suelo.
La forma en que la luz artificial es enviada hacia el cielo puede dividirse en tres partes:
- Directa, desde la propia fuente de luz (lámpara ó bombilla).
- Por reflexión en las superficies iluminadas.
- Por refracción en las partículas del aire
a) La refracción suele tener un impacto muy despreciable con respecto a las otras dos y su influencia depende del tamaño y cantidad de partículas del aire entre la fuente de luz y la zona iluminada. Disminuye con la distancia entre la fuente y la zona iluminada.
b) La reflexión suele tener un impacto inferior a 10 veces el impacto Directo. La diferencia principal con el Directo es que tiene un bajo brillo (millares de veces inferior). Su impacto es importante en grandes instalaciones o en pequeñas cuando se encuentra cercano al Observatorio (distancias inferiores a 10 Km.).
Su impacto no se puede eliminar totalmente pero puede reducirse evitando excesos en los niveles de iluminación ó reduciendo estos a altas horas de la noche cuando no se necesiten niveles elevados.
También puede disminuirse reduciendo los índices de reflexión de las superficies iluminadas (colores oscuros)
c) El impacto Directo es el más perjudicial.
Principalmente es producido por focos o proyectores simétricos (alumbrado de grandes áreas, zonas deportivas, puertos, aeropuertos, fachadas de edificios, etc.) con elevada inclinación (superior a 20º) donde parte del flujo de la lámpara (bombilla) es enviado directamente sobre el horizonte, desperdiciando energía luminosa.
Estos casos son especialmente graves, pues en general utilizan lámparas de gran voltaje. (400 W.- 2000 W.) con un elevado paquete luminoso, de forma que un sólo proyector puede impactar más que una población iluminada de 1.000 habitantes.
Otras instalaciones muy impactantes por su tamaño y proliferación son los alumbrados decorativos u ornamentales en los que el flujo de luz de la luminaria sale en todas las direcciones, especialmente sobre el horizonte, como son las bolas o globos y faroles con la lámpara (bombilla) en el medio del farol.
El impacto Directo puede eliminarse totalmente dirigiendo la luz sólo allí donde se necesite evitando enviar flujo hacia el cielo.
CARACTERÍSTICAS DEL FLUJO LUMINOSO. LÁMPARAS
No todos los tipos de lámparas (bombillas) impactan de igual forma.
Cuanto mayor sea la zona del espectro donde emite, mayor es su impacto. También depende de la zona del espectro donde emite. Una lámpara emitiendo en la zona del ultravioleta (no útil para el ojo humano) impacta más que cualquier otra con el mismo flujo. La radiación ultravioleta es una onda de gran energía con gran alcance y llega con mucha más fuerza a las instalaciones telescópicas.
De los tipos de lámparas que actualmente existen en el mercado, atendiendo a sus espectros, las podemos clasificar de la siguiente forma:
a) Poco contaminantes:
– Vapor de Sodio a Baja Presión: emite prácticamente sólo en una estrecha zona del espectro, dejando limpio el resto. Su luz es amarillenta y monocromática. Es recomendable para alumbrados de seguridad y carreteras fuera de núcleos urbanos. Son las más eficientes del mercado y carece de residuos tóxicos y peligrosos.
– Vapor de Sodio a alta Presión: emiten sólo dentro del espectro visible. Su luz es amarillenta con rendimientos de color entre 20% y 80%, dependiendo del modelo. Es recomendable para todo tipo de alumbrado exterior. Son las más eficientes del mercado después de las de baja presión.
b) Medianamente contaminantes:
– Lámparas incandescentes: No emiten en el ultravioleta pero si en el infrarrojo cercano. Su espectro es continuo. Su luz es amarillenta con un rendimiento de color del 100%. No es recomendable para alumbrado exterior, excepto para iluminar detalles ornamentales. Son las más ineficaces del mercado.
– Lámparas incandescentes halógenas. Son iguales que las incandescentes pero emiten algo más en el ultravioleta si no va provista de un cristal difusor (son peligrosas sin este cristal por emitir en el ultravioleta duro). Son algo más eficaces que las incandescentes.
– Lámparas fluorescentes en tubos y compactas (vapor de mercurio a baja presión): Emiten en el Ultravioleta. Su luz es blanca con rendimientos cromáticos entre el 40% y el 90%. Es recomendable para alumbrados peatonales y de jardines. Tienen una alta eficiencia.
Estas lámparas son medianamente contaminantes si no se usan en grandes instalaciones y convenientemente apantalladas evitando emisión de luz sobre el horizonte.
Debido a sus bajos paquetes de lúmenes, si se usan compactas con voltajes de hasta 25 W. (o incandescentes hasta 60 W.), de forma discreta y separadas a más de 15 m. unas de otras, no representan un impacto apreciable si están a más de 10 Km. de las instalaciones telescópicas, siempre y cuando no se superen los niveles de iluminación recomendados (10-5 lux de media y 20 lux de máxima puntual).
Por otro lado, la sensibilidad del ojo humano se desplaza hacia el azul con niveles bajos de iluminación por lo que las lámparas fluorescentes son más adecuadas para instalaciones que requieran un alumbrado tenue y de señalización (en paseos, jardines) con entornos oscuros.
c) Muy contaminantes:
– Lámparas de Vapor de Mercurio a alta presión: Tienen una elevada emisión en el ultravioleta. Su luz es blanca con rendimientos de color inferiores al 60%. Es recomendable para zonas peatonales y de jardines. Son las menos eficientes del mercado en lámparas de descarga.
– Lámparas de halogenuros metálicos: Tienen una fortísima emisión en el ultravioleta. Su luz es blanca azulada con rendimientos de color entre el 60% y el 90%. Es recomendable para eventos deportivos importantes y grandes zonas donde se requiera un elevado rendimiento cromático. Son muy eficaces, parecidas al sodio de alta presión, pero de corta vida.
IMPACTOS EN EL MEDIO AMBIENTE
Se desconoce la existencia de impactos en el medio ambiente producidos por la contaminación lumínica, refiriéndonos al entorno oscuro que es afectado por el brillo artificial del cielo, a excepción del impacto sobre el paisaje nocturno natural (incluyendo las maravillas del universo).
Si existen impactos en el lugar donde se encuentran los focos o fuentes de contaminación. Estos producen por deslumbramiento y exceso de iluminación: Inseguridad vial, derroche energético, stress, vandalismo, stress visual y trastornos en el mundo animal y vegetal a causa de la excesiva iluminación (este tema lo trataremos más profundamente en artículos posteriores, dada su importancia).
– Inseguridad vial. Debido a que el ojo humano se adapta rápidamente a la superficie o punto de mayor brillo que hay en su campo de visión y por otro lado a su lenta adaptación de una zona muy iluminada a otra oscura (varios minutos), produce que en alumbrados mal proyectados los conductores reduzcan su capacidad de percepción (deslumbramiento). Son ejemplos claros de este efecto los siguientes casos:
1) El paso de una carretera muy iluminada a otra poco iluminada.
2) También ocurre en viales iluminados con muy poca uniformidad, es decir, los puntos de luz intercalados a más de 3 ó 5 veces la altura de las luminarias. Esto produce zonas oscuras y zonas muy iluminadas, por lo que el ojo humano se acostumbra a las zonas más brillantes y lo obstáculos en las zonas oscuras no son percibidos.
3) Circular por una carretera sin iluminación y tener puntos brillantes de luz en el campo de visión, como instalaciones con proyectores inclinados (un campo de fútbol) o luminarias prismáticas, globos, faroles de instalaciones anexas a la carretera. Este fenómeno debe tenerse muy en cuenta en futuras instalaciones debido al hecho de que el efecto del deslumbramiento es tres veces peor en una persona de 60 años que en una de 25 años y que el envejecimiento de nuestra población va en incremento.
– Derroche energético. Por lo visto en párrafos anteriores, si utilizamos la mayor parte de la luz en iluminar lo necesario y no fuera de los límites que queremos iluminar, necesitamos menos energía eléctrica para tener una iluminación adecuada.
Si se realizan los alumbrados con los niveles de iluminación necesarios (sin excederse) también reducimos el consumo eléctrico. Igualmente, si se optan medidas de reducción de flujo luminoso a partir de ciertas horas de la noche cuando los niveles de iluminación requeridos sean inferiores a los de las primeras horas de la noche, o incluso el apagado de la misma (alumbrados ornamentales, anuncios luminosos, etc.).
Realizar un alumbrado con una excesiva iluminación supondrá que las instalaciones vecinas tiendan a igualarlo produciéndose un efecto multiplicativo en el consumo de energía (innecesaria).
También debe tenerse en cuenta el usar el tipo de lámpara (bombilla) adecuada para cada instalación procurando usar la más eficiente para cada caso (por ejemplo, no debe usarse lámparas incandescentes o de vapor de mercurio para alumbrados de seguridad), esto vendrá condicionado por la reproducción cromática necesaria.
–Stress, vandalismo, stress visual: El deslumbramiento, además provoca cansancio visual (somnolencia, dolor de cabeza). También ha sido demostrado su influencia en el stress y vandalismo (reduciendo el deslumbramiento se reduce el vandalismo) según estudios realizados en la ciudad de Nueva York. No es inadvertido como en nuestras islas las luminarias tipo GLOBO reciben la mayor parte del vandalismo a instalaciones de alumbrado (autodestrucción).
En instalaciones alejadas de zonas iluminadas, es preferible no utilizar alumbrados de seguridad, pues de lo contrario se esta indicando donde se encuentra la instalación y proporcionando posibles zonas de acceso a la misma. Es más efectivo un alumbrado disuasorio que se encienda por presencia o similar.
Comentarios
Publicar un comentario